电子元器件配单头像(电子元器件配单是什么意思)
今天给各位分享电子元器件配单头像的知识,其中也会对电子元器件配单是什么意思进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
电子元件名称符号及单位?
如果我的回答您还满意。希望采纳 谢谢 电 流 电荷的定向移动叫做电路中,电流常用I表示。电流分直流和交流两种。电流的大小和方向不随时间变化的叫做直流。电流的大小和方向随时间变化的叫做交流。电流的单位是安(A),也常用毫安(mA)或者微安(uA)做单位。1A=1000mA,1mA=1000uA。
电流可以用电流表测量。测量的时候,把电流表串联在电路中,要选择电流表指针接近满偏转的量程。这样可以防止电流过大而损坏电流表。电 压 河水之所以能够流动,是因为有水位差;电荷之所以能够流动,是因为有电位差。电位差也就是电压。电压是形成电流的原因。在电路中,电压常用U表示。电压的单位是伏(V),也常用毫伏(mV)或者微伏(uV)做单位。1V=1000mV,1mV=1000uV。
电压可以用电压表测量。测量的时候,把电压表并联在电路上,要选择电压表指针接近满偏转的量程。如果电路上的电压大小估计不出来,要先用大的量程,粗略测量后再用合适的量程。这样可以防止由于电压过大而损坏电压表。电 阻 电路中对电流通过有阻碍作用并且造成能量消耗的部分叫做电阻。电阻常用R表示。电阻的单位是欧(Ω),也常用千欧(kΩ)或者兆欧(MΩ)做单位。1kΩ=1000Ω,1MΩ=1000000Ω。导体的电阻由导体的材料、横截面积和长度决定。
电阻可以用万用表欧姆档测量。测量的时候,要选择电表指针接近偏转一半的欧姆档。如果电阻在电路中,要把电阻的一头烫开后再测量。欧姆定律 导体中的电流I和导体两端的电压U成正比,和导体的电阻R成反比,即I=U/R
这个规律叫做欧姆定律。如果知道电压、电流、电阻三个量中的两个,就可以根据欧姆定律求出第三个量,即
I=U/R,R=U/I,U=I×R
在交流电路中,欧姆定律同样成立,但电阻R应该改成阻抗Z,即I=U/Z电 源 把其他形式的能转换成电能的装置叫做电源。发电机能把机械能转换成电能,干电池能把化学能转换成电能。发电机、干电池等叫做电源。通过变压器和整流器,把交流电变成直流电的装置叫做整流电源。能提供信号的电子设备叫做信号源。晶体三极管能把前面送来的信号加以放大,又把放大了的信号传送到后面的电路中去。晶体三极管对后面的电路来说,也可以看做是信号源。整流电源、信号源有时也叫做电源。负 载 把电能转换成其他形式的能的装置叫做负载。电动机能把电能转换成机械能,电阻能把电能转换成热能,电灯泡能把电能转换成热能和光能,扬声器能把电能转换成声能。电动机、电阻、电灯泡、扬声器等都叫做负载。晶体三极管对于前面的信号源来说,也可以看作是负载。电 路 电流流过的路叫做电路。最简单的电路由电源、负载和导线、开关等元件组成。电路处处连通叫做通路。只有通路,电路中才有电流通过。电路某一处断开叫做断路或者开路。电路某一部分的两端直接接通,使这部分的电压变成零,叫做短路。
电动势 电动势是反映电源把其他形式的能转换成电能的本领的物理量。电动势使电源两端产生电压。在电路中,电动势常用δ表示。电动势的单位和电压的单位相同,也是伏。
电源的电动势可以用电压表测量。测量的时候,电源不要接到电路中去,用电压表测量电源两端的电压,所得的电压值就可以看作等于电源的电动势。如果电源接在电路中,用电压表测得的电源两端的电压就会小于电源的电动势。这是因为电源有内电阻。在闭合的电路中,电流通过内电阻r有内电压降,通过外电阻R有外电压降。电源的电动势δ等于内电压Ur和外电压UR之和,即δ=Ur+UR 。严格来说,即使电源不接入电路,用电压表测量电源两端电压,电压表成了外电路,测得的电压也小于电动势。但是,由于电压表的内电阻很大,电源的内电阻很小,内电压可以忽略。因此,电压表测得的电源两端的电压是可以看作等于电源电动势的。 干电池用旧了,用电压用测量电池两端的电压,有时候依然比较高,但是接入电路后却不能使负载(收音机、录音机等)正常工作。这种情况是因为电池的内电阻变大了,甚至比负载的电阻还大,但是依然比电压表的内电阻小。用电压表测量电池两端电压的时候,电池内电阻分得的内电压还不大,所以电压表测得的电压依然比较高。但是电池接入电路后,电池内电阻分得的内电压增大,负载电阻分得的电压就减小,因此不能使负载正常工作。为了判断旧电池能不能用,应该在有负载的时候测量电池两端的电压。有些性能较差的稳压电源,有负载和没有负载两种情况下测得的电源两端的电压相差较大,也是因为电源的内电阻较大造成的。周 期 交流电完成一次完整的变化所需要的时间叫做周期,常用T表示。周期的单位是秒(s),也常用毫秒(ms)或微秒(us)做单位。1s=1000ms,1s=1000000us。频 率 交流电在1s内完成周期性变化的次数叫做频率,常用f表示。频率的单位是赫(Hz),也常用千赫(kHz)或兆赫(MHz)做单位。1kHz=1000Hz,1MHz=1000000Hz。交流电频率f是周期T的倒数,即
f =1/T电 容 电容是衡量导体储存电荷能力的物理量。在两个相互绝缘的导体上,加上一定的电压,它们就会储存一定的电量。其中一个导体储存着正电荷,另一个导体储存着大小相等的负电荷。加上的电压越大,储存的电量就越多。储存的电量和加上的电压是成正比的,它们的比值叫做电容。如果电压用U表示,电量用Q表示,电容用C表示,那么
C=Q/U
电容的单位是法(F),也常用微法(uF)或者微微法(pF)做单位。1F=106uF,1F=1012pF。
电容可以用电容测试仪测量,也可以用万用电表欧姆档粗略估测。欧姆表红、黑两表笔分别碰接电容的两脚,欧姆表内的电池就会给电容充电,指针偏转,充电完了,指针回零。调换红、黑两表笔,电容放电后又会反向充电。电容越大,指针偏转也越大。对比被测电容和已知电容的偏转情况,就可以粗略估计被测电容的量值。在一般的电子电路中,除了调谐回路等需要容量较准确的电容以外,用得最多的隔直、旁路电容、滤波电容等,都不需要容量准确的电容。因此,用欧姆档粗略估测电容量值是有实际意义的。但是,普通万用电表欧姆档只能估测量值较大的电容,量值较小的电容就要用中值电阻很大的晶体管万用电表欧姆档来估测,小于几十个微微法的电容就只好用电容测试仪测量了。容 抗 交流电是能够通过电容的,但是电容对交流电仍然有阻碍作用。电容对交流电的阻碍作用叫做容抗。电容量大,交流电容易通过电容,说明电容量大,电容的阻碍作用小;交流电的频率高,交流电也容易通过电容,说明频率高,电容的阻碍作用也小。实验证明,容抗和电容成反比,和频率也成反比。如果容抗用XC表示,电容用C表示,频率用f表示,那么
XC=1/(2πfC)
容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。电 感 电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么
L= φ/I
电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。1H=1000mH,1H=1000000uH。感 抗 交流电也可以通过线圈,但是线圈的电感对交流电有阻碍作用,这个阻碍叫做感抗。电感量大,交流电难以通过线圈,说明电感量大,电感的阻碍作用大;交流电的频率高,交流电也难以通过线圈,说明频率高,电感的阻碍作用也大。实验证明,感抗和电感成正比,和频率也成正比。如果感抗用XL表示,电感用L表示,频率用f表示,那么
XL= 2πfL
感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。阻 抗 具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。如果三者是串联的,又知道交流电的频率f、电阻R、电感L和电容C,那么串联电路的阻抗
阻抗的单位是欧。
对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。相 位 相位是反映交流电任何时刻的状态的物理量。交流电的大小和方向是随时间变化的。比如正弦交流电流,它的公式是i=Isin2πft。i是交流电流的瞬时值,I是交流电流的最大值,f是交流电的频率,t是时间。随着时间的推移,交流电流可以从零变到最大值,从最大值变到零,又从零变到负的最大值,从负的最大值变到零,,如图3甲所示。在三角函数中2πft相当于角度,它反映了交流电任何时刻所处的状态,是在增大还是在减小,是正的还是负的等等。因此把2πft叫做相位,或者叫做相。
如果t等于零的时候,i并不等于零,公式应该改成i=Isin(2πft+ψ),如图3乙所示。那么2πft+ψ叫做相位,ψ叫做初相位,或者叫做初相。相位差 两个频率相同的交流电相位的差叫做相位差,或者叫做相差。这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。
例如研究加在电路上的交流电压和通过这个电路的交流电流的相位差。如果电路是纯电阻,那么交流电压和电流电流的相位差等于零。也就是说交流电压等于零的时候,交流电流也等于零,交流电压变到最大值的时候,交流电流也变到最大值。这种情况叫做同相位,或者叫做同相。如果电路含有电感和电容,交流电压和交流电流的相位差一般是不等于零的,也就是说一般是不同相的,或者电压超前于电流,或者电流超前于电压。
加在晶体管放大器基极上的交流电压和从集电极输出的交流电压,这两者的相位差正好等于180°。这种情况叫做反相位,或者叫做反相
电子元件大全
电子元器件大全啊,概括的来说就是电阻、电容、电感、磁珠、二三极管、磁珠、光耦等系列!如果你要详细地的电子元器件大全,我觉得这个还得专业的电子元器件大全的书籍来介绍的比较的详细哦!我们只能简单的介绍一下电子元器件大全的基础知识哦!电子元器件大全的意思跟成语大全是基本类似,就是指电子元器件的类型的概括!所以这样我们也能判断出要用动态的眼光看电子元器件大全,因为随着电子的发展,会有越来越多的型号产生,所以以前的电子元器件大全都只能具有参考的价值哦!
电路板上常见的电子元器件有哪些?
电路板上除了主芯片外,使用量更多,更常见的其实是周边的辅助元器件或是通用料,像是模拟器件,被动器件等等。 这些元器件其貌不扬,品质却很重要。 加上货期和价格的波动较大,往往会影响到全板的配套。所以通用料更需要重视备货。富昌电子作为授权分销商,通用料品种全,渠道正,现货足,欢迎联系询价。
请说出10个以上的电子元器件名称?
⑴继电器
| 汽车继电器 | 信号继电器
| 固态继电器 | 中间继电器
| 电磁类继电器 | 干簧式继电器
| 湿簧式继电器 | 热继电器
| 步进继电器 | 大功率继电器
| 磁保持继电器 | 极化继电器
| 温度继电器 | 真空继电器
| 时间继电器 | 混合电子继电器
| 延时继电器 | 其他继电器
⑵二极管
| 开关二极管 | 普通二极管
| 稳压二极管 | 肖特基二极管
| 双向触发二极管 | 快恢复二极管
| 光电二极管 | 阻尼二极管
| 磁敏二极管 | 整流二极管
| 发光二极管 | 激光二极管
| 变容二极管 | 检波二极管
| 其他二极管
⑶三极管
| 带阻三极管 | 磁敏三极管
| 开关晶体管 | 闸流晶体管
| 中高频放大三极管 | 低噪声放大三极管
| 低频、高频、微波功率晶体管 | 开关三极管
| 光敏三极管 | 微波三极管
| 高反压三极管 | 达林顿三极管
| 光敏晶体管 | 低频放大三极管
| 功率开关晶体管 | 其他三极管
⑷电子专用材料
| 电容器专用极板材料 | 导电材料
| 电极材料 | 光学材料 | 测温材料
| 半导体材料 | 屏蔽材料
| 真空电子材料 | 覆铜板材料
| 压电晶体材料 | 电工陶瓷材料
| 光电子功能材料 | 强电、弱电用接点材料
| 激光工质 | 电子元器件专用薄膜材料
| 电子玻璃 | 类金刚石膜
| 膨胀合金与热双金属片 | 电热材料与电热元件
| 其它电子专用材料
⑸电容器
| 云母电容器 | 铝电解电容器
| 真空电容器 | 漆电容器
| 复合介质电容器 | 玻璃釉电容器
| 有机薄膜电容器 | 导电塑料电位器
| 红外热敏电阻 | 气敏电阻器
| 陶瓷电容器 | 钽电容器
| 纸介电容器 | 电子电位器
| 磁敏电阻/电位器 | 湿敏电阻器
| 光敏电阻/电位器 | 固定电阻器
| 可变电阻器 | 排电阻器
| 热敏电阻器 | 熔断电阻器
| 其它电阻/电位器
⑹连接器
| 端子 | 线束 | 卡座
| IC插座 | 光纤连接器
| 接线柱 | 电缆连接器
| 印刷板连接器 | 电脑连接器
| 手机连接器 | 端子台、接线座
| 其他连接器
⑺电位器
| 合成碳膜电位器 | 直滑式电位器
| 贴片式电位器 | 金属膜电位器
| 实心电位器 | 单圈、多圈电位器
| 单连、双连电位器 | 带开关电位器
| 线绕电位器 | 其他电位器
⑻保险元器件
| 温度开关 | 温度保险丝
| 电流保险丝 | 保险丝座
| 自恢复熔断器 | 其他保险元器件
⑼传感器
| 电磁传感器 | 敏感元件
| 光电传感器 | 光纤传感器
| 气体传感器 | 湿敏传感器
| 位移传感器 | 视觉、图像传感器
| 其他传感器
⑽电感器
| 磁珠 | 电流互感器 | 电压互感器
| 电感线圈 | 固定电感器 | 可调电感器
| 线饶电感器 | 非线饶电感器
| 阻流电感器(阻流圈、扼流圈)
| 其他电感器
⑾电声器件
| 扬声器 | 传声器 | 拾音器
| 送话器 | 受话器 | 蜂鸣器
⑿电声配件
| 盆架 | 电声喇叭 | 防尘盖
| 音膜、振膜 | 其他电声配件
| T铁 | 磁钢 | 弹波
| 鼓纸 | 压边 | 电声网罩
⒀频率元件
| 分频器 | 振荡器 | 滤波器
| 谐振器 | 调频器 | 鉴频器
| 其他频率元件
⒁开关元件
| 可控硅 | 光耦 | 干簧管 | 其他开关元件
⒂光电与显示器件
| 显示管 | 显象管 | 指示管
| 示波管 | 摄像管 | 投影管
| 光电管 | 发射器件 | 其他光电与显示器件
⒃磁性元器件
| 磁头 | 铝镍磁钢永磁元件
| 金属软磁元件(粉芯) | 铁氧体软磁元件(磁芯)
| 铁氧体永磁元件 | 稀土永磁元件
| 其它磁性元器件
⒄集成电路
| 电视机IC | 音响IC | 电源模块
| 影碟机IC | 录象机IC | 电脑IC
| 通信IC | 遥控IC | 照相机IC
| 报警器IC | 门铃IC | 闪灯IC
| 电动玩具IC | 温控IC | 音乐IC
| 电子琴IC | 手表IC | 其他集成电路
⒅电子五金件
| 触点 | 触片 | 探针
| 铁心 | 其他电子五金件
⒆显示器件
| 点阵 | led数码管 | 背光器件
| 液晶屏 | 偏光片 | 发光二极管芯片
| 发光二极管显示屏 | 液晶显示模块
| 其他显示器件
⒇蜂鸣器
等...........
请问各位大神图中的两个电子元器件叫什么?都有什么样功能?这都是在开关电源的驱动板上拍下来的图片。谢
上面图是P521就是东芝的TLP521,是晶体管输出的通用光耦。单个封装的四个脚1、2、3、4分别是A、K、E、C。背面印有圆点的那个脚是1脚,同侧的为2脚,按顺序转,是三四脚.
一二是输入,三四是输出
一是输入正,二是输入负.三是输出发射极,四是输出集电极
下面图是M57959L
内部电路组成及其特点:
1)高速输入输出隔离,绝缘强度高 2500VAC/min;
2)输入输出电平与TTL电平兼容,适于单片机控制;
3)内部有定时逻辑短路保护电路,同时具有延时保护特性;
4)具有可靠通断措施(采用双电源);
5)驱动功率大,可以驱动200A/600V或100A/1200V的IGBT模块
M57959L是单列直插式封装,从左至右依次编号,其中9~12为空端。1端和2端为故障检测输入端;4端:接正电源+15VDC;5端:驱动信号输出端;6端:接负电源-10VDC左右;8端:故障信号输出;13端和14端:驱动信号输入端,主要接收控制芯片送出的SPWM信号。
M57959L的内部原理框图
M57959L外围应用电路
所示实际应用电路具有IGBT过流过压保护功能。当检测到输入1端的电压为某一电平时,模块判定为电路短路,立即通过光藕输出关断信号,从而使其5端输出低电平将IGBT的GE两端置于负向偏置,可靠关断。同时,输出误差信号使故障输出端8端为低电平,从而驱动外接的保护电路工作。 由于IGBT要求的驱动功率大,单靠M57959L的输出功率不能满足要求,通常的做法是采用PNP和NPN对管推挽输出,即在M57959L的输出端接入一个互补跟随器。电阻R4、R3是输出限流电阻,防止电流过大损坏IGBT栅极。稳压管1N4745和1N4741分别采用对接的形式,主要是对输出信号进行钳位,使IGBT的驱动信号不超过规定的幅度,从而保证驱动信号的可靠性。 驱动模块M57959L的1端是一个基准电压,经快速二极管接入IGBT的集电极。当IGBT集电极电压低于基准电压时,IGBT栅极是一个方波信号,使IGBT导通更充分。当IGBT集电极电压高于基准电压时,IGBT栅极信号为尖脉冲信号,使IGBT趋于截止状态,从而起到保护模块的作用。当短路时,Vce(sat)急剧上升,设定一个Vref,一旦Vce(sat)大于Vref时,保护电路动作,注意的时检测工作必须用快恢复二极管。其实有多种技术可用来避免IGBT受到短路的破坏,其中最基本的技术便是在10us内关断IGBT。 IGBT保护原理图开通时的栅极驱动电压不能超过12V-20V的范围,开通时最佳栅极正向偏置电压为15V±10%,15V驱动电压足够使IGBT完全饱和导通,并使通态损耗减至最小,同时也限制了短路电流和它所带来的功率应力。当栅极电压为0时,IGBT处于截止状态。但是,为了保证IGBT在集电极-发射极电压上出现dv/dt噪声时仍能保持关断,必须在栅极上施加一个关断偏压,这样还可减少关断损耗。反偏压应在(-5)V-(-15)V,一般取-10V。选择适当的栅极串联电阻对IGBT栅极驱动相当重要。因为IGBT的开通和关断是通过栅极电路的充放电来实现的,栅极电阻值对其动态特性产生极大地影响。数值较小的电阻使栅极电容的充放电较快,从而减小开关时间和开关损耗,而且较小的栅极电阻还可避免dv/dt带来的误开通,但与此同时,它只能承受较小的栅极噪声,并导致栅极-发射极电容同栅极驱动导线的寄生电感产生振荡问题,而且较小的栅极电阻会使得IGBT开通的di/dt变大,导致较高的dv/dt,增加IGBT反并联二极管恢复时的浪涌电压。栅极驱动布线对防止潜在的振荡、减慢栅极电压的上升、减少噪声损耗、降低栅极电源电压或减少栅极保护电路的动作次数有很大的影响。因此布线时应考虑以下几点:(1)驱动板不能与IGBT控制端子直接相连时,应采用双股绞线(2转/cm),且距离尽量小。(2)驱动器与屏蔽板放置要合理,以防止功率电路和控制电路之间的电感耦合;(4)为了提高栅极抗干扰能力,一般在栅源之间并联电阻或双向箝位稳压管(约为18V),栅极箝位保护电路必须按低电感布线,并尽量放置于IGBT模块的栅极发射极控制端子及附近。
1. M57959L概述
M57959L混合集成电路由三菱公司生产,其最高工作频率为40kHz,采用双电源供电(+15V和-10V),输出电流峰值为 ,输入信号电流为16mA,短路保护状态维持时间2mS,M57959L的电路方框图如图
M57959L为防止短路,特设有检测与保护电路。其工作原理是IGBT应工作在开关状态,导通时其通态饱和压降较低;在短路故障时,集电极电流迅速上升,使其退饱和,集电极电压随之迅速上升。、利用这一特点,通过检测通态压降来判断是否发生短路。、当集-发电压过高,超过设定值时,短路检测电路动作,启动短路保护动作电路,降低门极驱动信号电压。产生故障信号、驱动外光偶,输出故障信号。为了使IGBT可靠关断,抑制管子集电极与发射集之间的关断尖峰电压,以及减弱通过反转电容的dv/dt的影响,避免管子过压击穿及误导通。这种驱动器设计时采用了“软关断”技术,检测到短路信号后立即降低栅极输入电压,并关断时给予负向偏压。保护电路中设有一定时器,若发生短路保护后1-2mS,输入电平为低电平,保护短路打开控制阀,恢复正常工作。
2.外围电路的典型配置
M57959L需要正负电源工作,应用时外围电路的典型配置如图6所示。图6中为单电源供电时外围电路的配置,VCC为25V,负向偏压可用一只稳压管VS与串联的限流电阻RS产生,VS常选用一只10V稳压管,RS常选用 。M57959L的1脚和6脚间常接一只30V的稳压管(VS1),其1脚为IGBT集电极之间接一快恢复二极管VD1。
常用电子元件名称
常用电子元件名称有:
1、电动机:
电动机是把电能转换成机械能的一种设备。它是利用通电线圈产生旋转磁场并作用于转子形成磁电动力旋转扭矩。
2、忆阻器:
忆阻器,全称记忆电阻器。它是表示磁通与电荷关系的电路器件。忆阻具有电阻的量纲,但和电阻不同的是,忆阻的阻值是由流经它的电荷确定。因此,通过测定忆阻的阻值,便可知道流经它的电荷量,从而有记忆电荷的作用。
3、排阻:
排阻,即网络电阻器。排阻是将若干个参数完全相同的电阻集中封装在一起,组合制成的。它们的一个引脚都连到一起,作为公共引脚。
4、电感元件:
电感元件是一种储能元件,电感元件的原始模型为导线绕成圆柱线圈。当线圈中通以电流i,在线圈中就会产生磁通量Φ,并储存能量。
5、电容器:
两个相互靠近的导体,中间夹一层不导电的绝缘介质,就构成了电容器。当电容器的两个极板之间加上电压时,电容器就会储存电荷。电容器的电容量在数值上等于一个导电极板上的电荷量与两个极板之间的电压之比。
参考资料来源:百度百科—电动机
参考资料来源:百度百科—忆阻器
参考资料来源:百度百科—排阻
参考资料来源:百度百科—电感元件
参考资料来源:百度百科—电容器
关于电子元器件配单头像和电子元器件配单是什么意思的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
网友评论